$30,000 Challenge Submission – Radiative Model

  1. AGW empirically disproved for $30,000 USD – part 1

    disproving AGW is simple, and the disproof can be empirically demonstrated. AGW depends on the unproven hypothesis of a net radiative “greenhouse effect” raising the surface temperature of our planet 33C above its theoretical blackbody temperature of -18C. But there is no net radiative GHE on our ocean planet.

    Does this mean there is an error in current radiative physics? No. The two layer radiative model that is the foundation of global warming claims works. You can even build an empirical model –
    – The target plate in chamber 1 reaches the higher equilibrium temperature. But this has no relationship to the reality of our planet. Standard S-B equations work for matt black plates separated by vacuum. They don’t work when coupling between “layers” in occurring via non-radiative transports. They don’t work on moving gases. They certainly don’t work on semi transparent surfaces and they don’t work on materials cooled by evaporation.

    And it is the last two points that are the killer for not just AGW but the very idea of a net radiative GHE on our planet.

    All of the AGW hoax can be disproved by just correctly answering one very, very simple question –
    “given 1 bar pressure, is the net effect of the atmosphere over the oceans warming or cooling?”

    The radiative GHE hypothesis stands or falls on this question as 71% of the planets surface is covered in ocean. If the net effect of the atmosphere over the ocean is cooling, AGW and the radiative GHE hypothesis are both disproved. Why? Because if the net effect of the atmosphere over 71% of the planets surface is cooling, the atmosphere in turn needs a cooling mechanism. The only effective cooling mechanism for the atmosphere is radiative gases. If, given 1 bar pressure, the atmosphere is cooling the oceans, then AGW, as you requested, is disproved.

    So is our atmosphere warming or cooling our oceans? The AGW hypothesis states that DWLWIR slows the cooling rate of the oceans allowing the average 240 w/m2 received to heat them above -18C to 15C.

    Can DWLWIR slow the cooling rate of liquid water that is free to evaporatively cool? The answer is no. Not to any measurable degree. This can be shown by the simplest empirical experiments –
    I have been running multiple versions of this experiment since 2011 –

    Just fill the sample containers with 40C water under the strong and weak LWIR sources. You will note no divergence in their cooling rate. Repeat, but this time float a square of LDPE film onto the surface of each sample. Now, when evaporative cooling is prevented, the sample cooling rates diverge. Incident LWIR, even if emitted from a cooler material, can slow the cooling rate of most materials. It just doesn’t work for liquid water that can evaporatively cool.

    But if DWLWIR is not keeping our oceans above -18C what could be doing it? The oceans are a “near blackbody” aren’t they? An average 240 w/m2 of incident solar radiation should only result in a temperature of 255K (-18C). Well the simple answer is that the oceans are not a near blackbody, they are what is known to engineers (but not climastrologists) as a “selective surface”.


  2. AGW empirically disproved for $30,000 USD – part 2

    So what is the difference between a “near blackbody” and a “selective surface”, and why does it matter? Here we will cover empirical experiments dealing with semi-transparent selective surfaces.

    Are you seated comfortably Christopher? Then let’s begin, let’s begin …in 1965.
    In 1965, researchers at Texas A&M were experimenting with solar storage ponds. While “salt gradient” won the day, some initial research was into freshwater evaporation constrained ponds –
    – They found an interesting thing. Despite making layer 2 matt black and absorbing more SW and UV, the pond didn’t heat as well. Layer 2 clear and layer 3 black worked far better. If layer 2 was black, they found temperatures just millimetres below could be 30C lower than surface. If there was no DWLWIR on such a solar pond with layer 2 matt black, then average surface temperature would indeed be -18C. But layer 2 clear and layer 3 black is a game changer. Without atmospheric cooling, regardless of DWLWIR, surface Tmax would top 80C.

    Let’s examine SW selective surfaces a little further –
    Here is the experiment being run under intermittent SW simulating diurnal cycle –

    The experiment is simple. Expose both blocks to equal SW radiation. Say about 1000 w/m2 for three hours. Block A now has a higher average temperature by about 20C. Try again with 1000 w/m2 of IR. No average temperature difference. Both blocks have the same ability to emit LWIR, the same ability to absorb both SW and IR. The only difference is the depth of SW absorption. And for materials with slow internal non-radiative transport this matters a lot.

    But acrylic blocks in that experiment are static. No convective circulation. Maybe that will save AGW? No –
    Here two insulated matt black tubs of water are used. One tub has clear water, the other water dyed black so light will not visibly penetrate 2mm depth. Exposed to SW, tub A with the clear water reaches the higher average temperature, and the higher surface temperature.

    Christopher, there is no way around it. The selective surface effect is what is keeping the oceans 33C above theoretical blackbody temp of -18C not DWLWIR as claimed by the Church of Radiative Climastsrology.

    So there you have it Christopher, the proof, via the scientific method of empirical experiment, showing that AGW is a physical impossibility. DWLWIR cannot be slowing the cooling rate of the oceans. Due to the selective surface effect of transparent water exposed to SW, the sun alone has the power to heat the oceans to 80C or beyond, were it not for atmospheric cooling. And the atmosphere as you know has only one effective cooling mechanism – radiative gases. Therefore global warming due to human emissions of CO2 is a physical impossibility, because the net effect of radiative gases in the atmosphere of our ocean planet is cooling at all concentrations above 0.0ppm.

    Here’s the simple facts of climate on our planet, Planet Ocean. –

    The sun heats the oceans.
    The atmosphere cools the oceans.
    Radiative gases cool the atmosphere.

    Just think Christopher, if you had spent $5000 on building this –
    – you might have been $25,000 better off.

    The good news is that paying out $30,000 USD to end the whole AGW thing and getting back to real environmental problems is a bargain.

    Christopher, time to pay the man.


    This is a duplicate submission and I responded in my posting $30,000 Challenge Submission – Black Bodies.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s